Discipline: Actual problems of chemistry of polymer composites

Lecture 13.

Theme: Biodegradable Polymer Composites. Natural and Synthetic Biodegradable Polymers

Objective:

To understand the **concept, types, and applications of biodegradable polymer composites**, including both **natural and synthetic biodegradable polymers**, and their role in sustainable materials.

Key Questions:

- 1. What are biodegradable polymers, and why are they important?
- 2. What are the main natural biodegradable polymers and their properties?
- 3. What are the main synthetic biodegradable polymers and their properties?
- 4. How are biodegradable polymer composites designed and manufactured?
- 5. What are the applications of biodegradable polymer composites in different industries?

Lecture Content:

- Introduction to Biodegradable Polymers:
 - Biodegradable polymers are polymers capable of being broken down by microorganisms into water, carbon dioxide, and biomass.
 - Importance: reducing environmental pollution, replacing conventional plastics, and enabling sustainable materials.
- Natural Biodegradable Polymers:
 - o Polysaccharides: starch, cellulose, chitosan, alginate.
 - Advantages: renewable, biocompatible.
 - Limitations: poor mechanical properties, moisture sensitivity.
 - o **Proteins:** gelatin, collagen, silk fibroin.
 - Used in medical applications, packaging, and tissue engineering.
- Synthetic Biodegradable Polymers:
 - o **Aliphatic polyesters:** polylactic acid (PLA), polycaprolactone (PCL), polyglycolide (PGA), polyhydroxybutyrate (PHB).

- Advantages: tunable degradation rate, good mechanical properties.
- Limitations: higher cost, sometimes lower processability than conventional plastics.
- **Polyester blends and copolymers:** PLA-PCL, PLA-PHA, PGA-PLA copolymers.
 - Tailored properties: improved flexibility, degradation rate, and mechanical strength.

Biodegradable Polymer Composites:

- o Formed by **reinforcing biodegradable polymers** with fibers, particles, or natural fillers (e.g., cellulose, starch, nanoclays).
- Design considerations: mechanical performance, degradation rate, environmental impact.
- Methods of fabrication: melt blending, solution casting, extrusion, and injection molding.
- Factors Influencing Biodegradability:
 - o Chemical structure: ester, amide, or ether linkages.
 - o Molecular weight: lower molecular weight enhances degradation.
 - o Crystallinity: amorphous regions degrade faster than crystalline regions.
 - **Environmental conditions:** temperature, humidity, pH, presence of microorganisms.

Applications:

- o **Medical:** sutures, drug delivery systems, tissue scaffolds.
- Packaging: biodegradable films, bags, disposable containers.
- o Agriculture: mulch films, controlled-release fertilizers.
- Environmental engineering: eco-friendly composites for temporary structures.

Key Short Theses:

- 1. Biodegradable polymers can be **degraded by microorganisms into harmless products**.
- 2. Natural biodegradable polymers include polysaccharides and proteins; synthetic include aliphatic polyesters and copolymers.
- 3. Biodegradable polymer composites combine a biodegradable matrix with reinforcements for enhanced properties.
- 4. Mechanical and degradation properties depend on chemical structure, molecular weight, crystallinity, and environmental conditions.
- 5. Fabrication methods include **melt blending**, **solution casting**, **extrusion**, **and injection molding**.
- 6. Applications span medical, packaging, agricultural, and environmental sectors.

7. Biodegradable composites offer a sustainable alternative to conventional plastics while enabling tailored properties for specific uses.

Control Questions:

- 1. Define biodegradable polymers and explain their importance.
- 2. Name three natural biodegradable polymers and their main properties.
- 3. Name three synthetic biodegradable polymers and their applications.
- 4. How are biodegradable polymer composites typically fabricated?
- 5. What factors influence the degradation rate of biodegradable polymers?
- 6. Give examples of applications of biodegradable polymer composites in medicine and packaging.
- 7. What are the advantages and limitations of natural vs. synthetic biodegradable polymers?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.

4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. - M.: Logos, 2006. - 397, [3] p. - (New University Library).